
Sponsors and Partners

Silver Sponsors

Strategic Sponsors

Gold Sponsors

Dependency Injection in .Net : Revisit

Wałdis Iljuczonok

net.developerdays.pl @DeveloperDaysPL

Wałdis Iljuczonok

Software Architect (@tech_fellow)

Microsoft Most Valuable Professional (MVP)

EPiServer Most Valuable Professional (EMVP)

Why?

net.developerdays.pl @DeveloperDaysPL

Plan
• Patterns

• Anti-Patterns

• Applying DI

• Personal Experience with DI

Definition

What is dependency?

http://blog.ploeh.dk/2010/04/07/DependencyInjectionisLooseCoupling/

DI is a set of principles and patterns

that enable loose coupling “

Object Composition

Inversion of Control (IoC)

S.O.L.I.D.

Patterns

Constructor Injection

Constructor Injection

Property Injection

Constructor Injection

Property Injection

Method Injection

Constructor Injection

Property Injection

Method Injection

Ambient Context

Constructor Injection

Property Injection

Method Injection

Ambient Context

Anti-Patterns

Control Freak

Composition Root

Layered

Onion

hexagonal

Main(string[] args)

Global.asax & IControllerFactory

Startup.cs & RouterMiddleware

Application.OnStartup

..rely on framework..

Control Freak

Bastard Injections

Control Freak

Bastard Injections

Constrained Construction

Control Freak

Bastard Injections

Constrained Construction

Service Locator

net.developerdays.pl @DeveloperDaysPL

Don’t ask, we will call you!
“Hollywood Principle”

Control Freak

Bastard Injections

Constrained Construction

Service Locator

Applying DI

Pure DI (aka Poor Man’s DI)

DI (IoC) Container

Autofac

Caliburn.Micro

Catel

DryIoc

DryIocZero

Dynamo

fFastInjector

Funq

Grace

Griffin

HaveBox

IfInjector

LightCore

LightInject

LinFu

Maestro

Mef

Mef2

MicroSliver

Microsoft.Extensions.DependencyInjection

Mugen

Munq

Ninject

Petite

SimpleInjector

Spring.NET

Stashbox

StructureMap

StyleMVVM

TinyIoC

Unity

Windsor

Register-Resolve-Release

Dependency Lifetime
(captive dependencies)

Personal Experience with DI

Conforming Container

FeatureSwitch

*.Ninject

*.StructureMap

*.Unity

*.<your-container>

*.Ninject

*.StructureMap

*.Unity

*.<your-container>

Constructor Over-Injection

Role Interfaces & Service Locator

AbstractFactory

Abstract Factory

vs

Service Locator

ServiceLocator

public interface IServiceLocator

{

 T Resolve<T>(object context);

}

AbstractFactory

public interface IAbstractFactory<T>

{

 T Resolve(object context);

}

ServiceLocator

public interface IServiceLocator

{

 T Resolve<T>(object context);

}

public interface IAbstractFactory<T>

{

 T Resolve(object context);

}

AbstractFactory

DI aware [Attributes]

Extra Bonus with DI

Aspects

russian doll (“матрёшка”)
model

https://cynthianewberrymartin.files.wordpress.com/2009/05/blog-2-13.jpg

Validation

Pre/post processing

Authorization

Logging

Caching

Auditing

Event dispatching

Notifications

Unit of work/transactions

...

Decorators

vs

Interceptors

Create loose-coupling code

Demand dependencies from consumer

Leverage DI container features

Look for anti-patterns

Be a BOY SCOUT!

THANK YOU!

net.developerdays.pl
@DeveloperDaysPL

Sponsors and Partners

Silver Sponsors

Strategic Sponsors

Gold Sponsors

